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INTRODUCTION

The Peterson quadrangle is located southeast of Ogden, Utah (plate 2). The major geographic features in and near the map area 
are Morgan Valley, the northern Wasatch Range to the west, Durst Mountain to the east, the Weber River in Morgan Valley, and 
lower Weber Canyon cut into the Wasatch Range by the river.

The most complete map of the Peterson quadrangle prior to this study was by Bryant (1984, 1988) and he focused on the 
Precambrian Farmington Canyon Complex, as did an earlier dissertation by Bell (1951). King is largely responsible for the 
bedrock mapping in the quadrangle and after limited field checks chose to modify the Precambrian contacts from Bryant (1984, 
1988). Because these rocks were not closely examined in the field, few attitudes are shown in Precambrian rocks on the map. 
Where strikes can be seen on aerial photographs and orthophotographs, corresponding planar attitudes shown by Bryant (1984, 
1988) are included on our map. However, the type of attitudes depicted on our map are not always those shown by Bryant 
(1984, 1988). Because his attitudes differ from those shown by Yonkee and Lowe (2004) where their mapping overlaps in the 
Ogden 7.5' quadrangle, his lineations and most of his planar features (mostly foliations) are not included on our map, and we are 
uncertain that those included are all correct. King and McDonald worked on the surficial deposits in Morgan Valley, and King 
is responsible for the surficial geology in the Wasatch Range. Despite his focus on the Precambrian, Bryant (1984, 1988) was 
the first to map the glacial deposits in the Wasatch Range north of Salt Lake City and south of Mount Ogden. Bryant’s (1984, 
1988) glacial mapping made our more detailed mapping easier; but, much work is still needed to define the glacial deposits and 
history. Ages (years) of surficial deposits in the text and tables are from various methods, as  reported in the references. Ages 
have not been converted to calendar years for several reasons, in part because the results from some methods cannot be con-
verted. Also, calendar year conversions of carbon-14 ages can only go back 24,000 to 50,000 years (depending on the method 
of conversion), several conversion methods and updates exist, and all conversions introduce non-analytical errors that decrease 
the age accuracy (see for example Stuiver, 1993; Stuiver and Reimer, 1993; Stuiver and others, 1998; Hughen and others, 2000; 
Reimer, 2004; Fairbanks and others, 2005; Reimer and others, 2006; Bronk Ramsey, 2009; Reimer and others, 2013).

GENERAL GEOLOGY

The Precambrian (early Proterozoic) Farmington Canyon crystalline rock complex and unconformably overlying Cenozoic 
(Eocene and Paleocene) Wasatch Formation are exposed in the Wasatch Range in the west part of the map area. Paleozoic rocks 
are exposed to the north and south in the Wasatch Range and to the east on Durst Mountain. Mississippian and older strata are 
likely present in the subsurface below the Wasatch Formation in Morgan Valley (see cross section). However, the subsurface 
structure and units present beneath the valley are uncertain; for possible variations see Bryant (1990, cross section C-C'), Royse 
(1993, cross section H-H'), and Yonkee and others (1997, cross section B-B'). The latest Eocene and Oligocene(?) Norwood 
Formation unconformably overlies the Wasatch Formation in the Peterson quadrangle, but the contact is poorly exposed.

STRUCTURAL GEOLOGY

Deformation in the area is complex. The timing from oldest to youngest is summarized here, although much of the evidence is 
from outside the Peterson quadrangle. The Precambrian Farmington Canyon Complex was metamorphosed and deformed in 
the latest Paleoproterozoic or Mesoproterozoic, roughly coeval with igneous intrusion (see Yonkee and Lowe, 2004 for more 
information). These rocks and Paleozoic strata were faulted and folded during the Cretaceous to Eocene part of the Cordilleran 
orogeny and were likely rotated down-to-the-east during late Cretaceous to Eocene uplift of the Wasatch anticlinorium (Wasatch 
culmination of Yonkee and others, 1997). This uplift was in part caused by the Ogden thrust system that was periodically active 
during movement on thrust faults in the Idaho-Utah-Wyoming region (Yonkee and Weil, 2011) east of the Peterson quadrangle.

The Ogden roof thrust may be present in the subsurface in the map area. This roof thrust is exposed to the north in the Wasatch 
Range (Yonkee and Lowe, 2004; King and others, 2008) and to the east on Durst Mountain (Coogan and King, 2006; Coogan 
and others, 2015); its trace between these exposures is likely to the north of the Peterson quadrangle in the Snow Basin quad-
rangle.  The Ogden roof thrust appears to be exposed south of the Peterson quadrangle in the Hardscrabble Creek area of the 
Porterville quadrangle (after Bryant, 1984, 1988, 1990; Yonkee and others, 1997). The trace between this exposure and the 
exposures on Durst Mountain may be present in the Morgan and/or Peterson quadrangles in the deep subsurface of Morgan 
Valley.  Yonkee and others (2003) showed this trace in the subsurface in Morgan Valley, but it is not shown on the cross sec-
tion in this report because it is conjectural. The cross section in this report is modified from J.C. Coogan’s (Western State Col-
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lege, now Western Colorado University, July 2, 2005, unpublished digital file) regional cross section through the Ogden 30 x 
60-minute quadrangle into Wyoming and beyond the concealed leading edge of the Hogsback thrust. The Ogden roof thrust is 
east-directed and, due to rotation related to the Wasatch anticlinorium, now dips about 30-degrees east on Durst Mountain (see 
Coogan and others, 2015).

The roughly north-south-trending normal faults in the Wasatch Formation and Farmington Canyon complex in the Peterson 
quadrangle are likely due to later, post-thrust Cenozoic extension. In particular, some offset is likely due to latest Eocene and 
Oligocene relaxation of the Cordilleran fold-and-thrust belt (collapse of Constenius, 1996); this is indicated by about 6000 feet 
(1850 m) of Eocene and Oligocene(?) Norwood Formation fill in Morgan Valley (Coogan and others, 2015). The Wasatch For-
mation and overlying Norwood Formation were likely folded into the north-plunging Morgan Valley syncline in the Oligocene 
and/or early Miocene; the axis is in the Morgan and Porterville quadrangles. Later, Miocene and younger Basin and Range 
faulting (see for example McCalpin, 1993) occurred in the map area, indicated by roughly north-south-trending normal faults 
in the Norwood Formation and Quaternary deposits.

Fault scarps in Quaternary to Tertiary(?) deposits appear to be present on the west side of Morgan Valley in and near the heads 
of high-level alluvial fans (QTaf) in the Peterson and Snow Basin quadrangles. A fault is shown by King and others (2008) near 
the mountain front at the head of the fan north of Strawberry Creek in the Snow Basin quadrangle. In the Peterson quadrangle, 
a less distinct scarp is mapped near the mountain front at the head of the fan north of the Right Hand Fork of Peterson Creek 
(plate 1); this setting is like the scarp in the Snow Basin quadrangle. Other fault scarps cut high-level alluvial fans (QTaf?) 
between the South Fork of Line Creek and the North Fork of Deep Creek, west of the mountain front.

Quaternary fault scarps are also present east of the mountain front in the Peterson quadrangle. These scarps are along trend 
with lineaments that may mark the change from carbonate-cemented sandstone beds to less resistant claystone in the Norwood 
Formation. About a mile (1.6 km) to the east of the Peterson Creek fan-head scarp, surfaces on remnants of QTaf appear to 
be offset down to the west, such that an antithetic fault is mapped between the two remnants. South of the Right Hand Fork 
of Peterson Creek, a “hanging” drainage appears to be offset 150 feet (45 m) down to the east; but offset across the scarp to 
the north in Norwood Formation bedrock is only 70 feet (20 m) (plate 1). A scarp is present in glacial outwash deposits (upper 
Pleistocene, Pinedale age?) south of and adjacent to the “hanging drainage.” Quaternary deposits also appear offset north and 
south of Smith Creek. North of Smith Creek the surfaces on remnants of what may be high-level alluvial fans (QTaf?) appear to 
be offset 120 feet (37 m) down to the east. At and south of Smith Creek, the youngest unit a fault cuts is alluvium related to the 
Bonneville shoreline of Lake Bonneville (Qab) (upper Pleistocene); offset appears to be about 10 to 20 feet (3–6 m). The ex-
tension of this fault to the south is largely coincident with the flank of a landslide, complicating any interpretation. Lineaments, 
rather than faults, are mapped in the Norwood Formation along trend with and east of these faults, because they are parallel to 
the strike of the Norwood Formation and may be changes in erosional resistance in the Norwood Formation rather than faults. 
They are extended through Quaternary deposits to emphasize their length and because some are visible in Quaternary deposits.

East of the Peterson quadrangle, middle to lower Pleistocene (Quaternary) deposits are cut by extensional faults along the east 
side of Morgan Valley. Scarps along the mountain front are part of the 10-mile-long (16-km) fault system that bounds the west 
side of the Durst-Elk Mountain block, extending from or slightly south of Morgan to north of Cottonwood Creek in the Durst 
Mountain quadrangle. One scarp is visible in older eroded alluvial-fan (Qafoe) deposits at the mouth of Pine Canyon in the 
Morgan quadrangle and another scarp may be present in adjacent Qafoe deposits north of the drainage. To the north in the Durst 
Mountain quadrangle, possible fault scarps are present in Quaternary mass-movement deposits along the east margin of Morgan 
Valley, and on middle or lower Pleistocene alluvial deposits (Qaoe) north of Cottonwood Creek (see Coogan and King, 2006).

TERTIARY GEOLOGY

The relationships between the Norwood Formation, Keetley Volcanics, Fowkes Formation, and other pre-Miocene volcanicla-
stic rocks in northern Utah have been discussed periodically (Wingate, 1961; Eardley, 1969; Nelson, 1971, 1979; Bryant and 
others, 1989) since the name Norwood Tuff was proposed by Eardley (1944). Prior to work on the Ogden 30' x 60' quadrangle, 
the Norwood Formation was considered to be younger than the Fowkes Formation. However, neither formation is well dated 
due to alteration of datable minerals and the considerable thicknesses of partially exposed volcaniclastic fill in multiple basins. 
Further, Veatch (1907), who named the Fowkes, and Eardley (1944) mistakenly placed the Fowkes Formation within the Eo-
cene and Paleocene Wasatch Formation strata (their Almy and Knight Formations), raising questions about whether Fowkes 
is an appropriate name. Also complicating the naming problems, strata of the type Norwood Tuff were originally named and 
placed in the Salt Lake Formation/Group by Hayden (1869), and Fowkes-age strata in Cache Valley (see Smith, 1997; Oaks and 
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others, 1999) were mapped as part of the Salt Lake Formation (see for example Williams, 1962). Farther away from the type 
area, the Norwood contains little tuff because the glass has been altered (devitrified), mostly to clay and zeolite minerals, with 
some carbonate and silica material, hence the use of Norwood Formation rather than Tuff.

Available isotopic ages now indicate a bimodal age distribution (~39–40 and 48–49 Ma) for Fowkes strata exposed along the 
Utah-Wyoming border (see Coogan and others, 2015 for more information), with one outlier. This outlier is the sample 96-53, 
a tuffaceous sandstone from the Fowkes Formation in the Castle Rock quadrangle (2100 feet [640 m] from south line [fsl] and 
1800 feet [550m] from east line [fel] section 34 T. 4 N., R. 7 E.), which was isotopically dated by K-Ar analyses on hornblende 
at 32.3 + 1.2 Ma (Coogan and King, 2016). This sample is from the base of the Fowkes Formation, stratigraphically below 
samples from the Castle Rock quadrangle that have 40Ar/39Ar ages of about 39–40 Ma, and the age is about 6 million years 
younger than any Norwood or Fowkes Formation age (see Coogan and King, 2016) and appears unreliable.

The young 40Ar/39Ar ages for the Fowkes (40.41 Ma and 38.78 Ma on biotite and hornblende, respectively) are from strata a 
few hundred feet above the upper Wasatch Formation (lower Fowkes) contact in the Yellow Creek graben in the Ogden 30' x 60' 
quadrangle, Utah (see Coogan and others, 2015). The older Fowkes ages (48–49 Ma) are from farther north and are from different 
grabens, in particular the Almy graben along the Bear River north of Evanston, Wyoming, that was reported by Nelson (1979), and 
near the type area of the Fowkes, reported by Oriel and Tracey (1970) and Smith and others (2008, p. 67). K-Ar ages were recalcu-
lated using Dalrymple (1979). These older ages and paleontological evidence indicate these older Fowkes strata are essentially the 
time equivalent of the Bridger Formation to the east in the Green River Basin, Wyoming (Nelson, 1973, 1974; see also Lillegraven, 
1993, figures 4O and 4P). As yet, old Fowkes cannot be distinguished in the field from young Fowkes; so abandoning the Fowkes 
name, and using Bridger for the older Bridger-age strata while using Norwood Formation for the younger strata, is premature. 
In Morgan Valley and the East Canyon graben (East Canyon Reservoir quadrangle), Norwood Formation isotopic ages (38–39 
Ma) (recalculated from Evernden and others, 1964, and Mann, 1974) are near the younger end of the Fowkes age distribution, 
but Norwood strata isotopically dated in Morgan Valley are at least 2500 feet (800 m) above the base of the Norwood and much 
older strata may be present. So Fowkes strata cannot be distinguished from Norwood-age strata when they are in the same basin.

Another younger outlier from the bimodal Fowkes-Norwood age ranges is from the Norwood Formation in the East Canyon 
graben, much closer to the Peterson quadrangle. This sample from the upper part of the Norwood was isotopically dated by 
K-Ar analyses on biotite at 29.6 + 1.1 Ma, but this age is suspect due to low K2O content (Bryant and others, 1989). Further, 
northwest bedding dips mean this outcrop should be older than the strata isotopically dated at ~39 Ma by Mann (1974).

Paleontological evidence on the Norwood is presented in Adamson (1955), Evernden and others (1964), and Nelson (1971, 
1977); see also Gazin (1959, p. 137). Paleontological data on the Fowkes Formation near Evanston, Wyoming (where isotopi-
cally dated; Nelson, 1979), is presented in Nelson (1971); see also Oriel and Tracey (1970, p. 16 on the white beds west of the 
Bear River) and Nelson (1973, 1974, 1979).

Isotopic ages of the Keetley Volcanics and their intrusive equivalents are generally younger than or as old as the younger 
Fowkes and Norwood ages (~33 to 39 Ma) (see Vogel and others, 1997; see also Nelson, 1976), but the ages of some intrusions 
near Park City are reportedly within the Fowkes age range (38–39 to 48–49 Ma), but some are between the bi-modal age sets 
(40–47 Ma) (John and others, 1997). Because intrusions cool more slowly than volcanic rocks, the datable minerals in source 
intrusions pass through their setting temperatures later than they do in their eruptive equivalents and therefore the intrusions 
can have isotopic ages that are several million years younger than their eruptive equivalents (see Lipman and Bachmann, 2015). 
Based on these ages and the “lag” in intrusion ages, the Park City area may be the source of the younger volcanic material in 
the Fowkes Formation more than 25 miles (40 km) to the northeast as well as the Norwood Formation 20 to 50 miles (30–80 
km) to the north-northwest. The most likely volcanic source(s) for the older (48–49 Ma) Fowkes-Bridger strata is the Challis 
volcanic field, Idaho and/or Absaroka volcanic field, Wyoming (see Chandler, 2006; Smith and others, 2008, in particular figure 
5), although with the intrusive lag some volcanic material could be from the Park City area.

Similar volcanic to tuffaceous strata of about the same age (38–39 Ma and 44–49 Ma versus 48–49 Ma) as the Fowkes-Bridger 
and Norwood are exposed to the southwest near Salt Lake City and to the north in southern Cache Valley, Utah about 70 miles 
(110 km) north of the Park City vents. See Van Horn (1981) and Van Horn and Crittenden (1987), Smith (1997), Oaks and oth-
ers (1999), and Coogan and others (2015) for more information.

Based on similar ages (discussed above) and geology, the type Norwood Formation appears to be the more distal sedimentary 
equivalent of the volcano comprised by the Keetley Volcanics to the south near Park City, Utah. This correlation is likely be-
cause the Norwood Formation to the southeast in the East Canyon graben is transitional between the Morgan Valley and Park 
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City locations and lithologies, a relationship previously noted by Eardley (1944) and Bryant and others (1989). The Norwood 
Formation in East Canyon looks like proximal volcano apron deposits because it contains more tuff and variably rounded, 
sedimentary volcanic-rock clasts and fragments in conglomerates and sandstones than the Morgan Valley rocks, and the clasts 
are large enough that they are easily recognizable as volcanic lithologies present in the Keetley Volcanics. Although the ages 
are similar (see above), the geologic setting and stratigraphy of similar volcaniclastic rocks near Salt Lake City (Tn and Tkb of 
Bryant, 1990) have not been worked out.

The thickness of fill (Norwood and younger) in Morgan Valley is uncertain, in part because Paleozoic rocks are not exposed on 
the west side of Morgan Valley and their dip cannot be observed. Overall, the valley-fill thickness seems to increase to the north 
with the plunge of the Morgan Valley syncline and possibly the throw on the Morgan fault zone. From Lum’s (1957) gravity 
profile, about 8000 feet (2500 m) of low-density fill is in the valley (equal to about 100 m of low-density fill for each milligal on 
a Bouguer gravity map by Quitzau, 1961), although the profile location is not known because Lum’s thesis plates are missing 
from the University of Utah library. This 8000 feet (2500 m) is the amount of Norwood Formation fill that J.C. Coogan (Western 
State College, now Western Colorado University, July 2, 2005, unpublished digital file) showed on his cross section just north of 
Morgan; he also showed about 900 feet (275 m) of Wasatch Formation in the subsurface. Based on outcrop width and 40 degree 
dip of strata (not adjusted for topography), King chose to show on cross-section A-A' about 1600 to 2500 feet (500–760 m) of 
Wasatch Formation; about 6000 feet (1800 m) of overlying Norwood; and about 3500 feet (1100 m) of post-Norwood, at least 
partially conglomeratic (higher density), Tertiary strata in the basin fill (see Coogan and others, 2015). Alternatively, the valley 
fill is thinner, only about 6400 feet (1950 m) thick, if a factor of 80 meters of lower density valley fill per milligal is used (see 
data in Phelps and others, 1999 that crudely results in 90 meters per milligal).

QUATERNARY AND LATEST TERTIARY GEOLOGY

Remnants of Pliocene and/or Pleistocene alluvial deposits are present on both sides of Morgan Valley. Upper surfaces of high-
level alluvial deposits (QTaf with QTao, and possibly QTa and QTay) in the Morgan, Durst Mountain, Peterson, and Snow 
Basin quadrangles appear to be the Weber Valley surface of Eardley (1944). However, high-level alluvial fans (QTaf) extend 
to the mountain front at elevations of about 6800 to 7200 feet (2070–2195 m) (see Coogan and King, 2006; King and others, 
2008), rather than to the mountain ridgelines as suggested by Eardley (1944). In the Peterson quadrangle, these fans appear to 
extend beyond the mountain front and above 7200 feet (2195 m), to almost 8000 feet (2440 m) near the upper reaches of the 
South Fork of Line Creek. The bench on the Tintic Quartzite at about 8200 feet (2500 m), located below the bowls (cirques) in 
the Snow Basin quadrangle, may be another example of this surface (see King and others, 2008, map plate); alternatively the 
bench may be part of the Herd Mountain surface that is at elevations of 7600 to 8600 feet (2300–2620 m) in the Bybee Knoll 
quadrangle with remnants in the Huntsville, Browns Hole, and Sharp Mountain quadrangles (Coogan and King, 2016). Thin 
remnants of high-level alluvial deposits (boulder lags, typically quartzite, with unmappable extents) are present on some ridges 
in the Snow Basin quadrangle, for example between the new and old Snow Basin ski area access roads (southeast T. 6 N., R. 
1 E.) and in NW1/4 section 14, T. 5 N., R. 1 E. (Salt Lake Base Line and Meridian [SLBM]). Along and west of the mountain 
ridgeline in the Peterson quadrangle, the Weber Valley surface of Eardley (1944) and Bell (1951, his thick tan soil) may encom-
pass the erosional surface on which the Wasatch Formation was deposited, rather than being the Pliocene-Pleistocene alluvial 
Weber Valley surface. Bell (1951) showed Wasatch Formation (his red boulder conglomerate Knight Formation) adjacent to 
tan soil on the west slope of the range in what we mapped as landslides (see Tw debris in Qms deposits on northwest margin 
of our map). This is the only confirmed Wasatch material on the range in the Peterson quadrangle, because Wasatch Formation 
mapped by Bryant (1984, 1988) along fault zones appears to be hematitic fault material (our unit KXc).

Pre-Lake Bonneville Pleistocene alluvial and landslide deposits are present in the Peterson and adjacent quadrangles, and little 
studied upper and middle Pleistocene glacial deposits cover bedrock in the middle of the Peterson quadrangle on both sides of 
the crest of the Wasatch Range. Cirques are best developed on the east side of the crest. Upper Pleistocene lacustrine, deltaic, 
and alluvial deposits related to Lake Bonneville are present in Morgan Valley, although the lake did not occupy the valley after 
it dropped to the Provo shoreline (~4820 feet [1470 m]). Quaternary deposits that post-date Lake Bonneville are mostly Holo-
cene and uppermost Pleistocene alluvium in the Weber River floodplain and landslides in the Norwood Formation. Note that no 
landslides are mapped that are younger than the September 1986 aerial photographs used to create the map, though they may be 
present. Other significant post-Lake Bonneville deposits are alluvial fans (containing debris-flow deposits) on which develop-
ment is occurring. As documented in water wells in the Weber River floodplain (Utah Division of Water Rights, well drilling 
database), Quaternary fill in the floodplain is up to about 200 to 250 feet (60–75 m) thick.

In the Peterson quadrangle, ages of alluvium, including terraces and fans, are in part based on heights above present drainages 
in Morgan Valley, including in the Snow Basin, Durst Mountain, and Morgan quadrangles; see table 1 and note revisions from 
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Coogan and King (2006) and King and others (2008). This height approach was taken, rather than relating them to elevations 
(including Lake Bonneville shorelines) or a single drainage (like the Weber River), because erosion over time has incised drain-
ages, increasing the heights of alluvium above drainages; also alluvial surfaces have slopes, and tributaries to the Weber River 
increase in elevation up their drainages. So the first surface next to a drainage could be ten to hundreds of feet above the Weber 
River or above a particular elevation. Further, the slopes of alluvial surfaces west of the Weber River off the Wasatch Range and 
those off Durst Mountain east of the Weber River are not the same. Also, many surfaces predate Lake Bonneville and drainages 
were likely backfilled during the rise of Lake Bonneville. The eroded valley fill that has moved down the Weber River must be 
voluminous as the oldest surfaces are now at least 1000 feet (300 m) above the Weber River.

The alluvium ages may extend through the former Quaternary-Tertiary boundary (1.8 Ma, the end of Olduvai normal paleo-
magnetism subchron [table 2]), but may not be as old as the 2.6 Ma Quaternary-Neogene boundary adopted by the International 
Union of Geological Sciences (roughly the end of the normal paleomagnetism marking the top of the Gauss chron) (see Gibbard 
and Cohen, 2008). However, carving nearly a million years out of the episodically shrinking Pliocene (latest Tertiary) means 
rocks we have listed as Pliocene in the Morgan quadrangle (Coogan and others, 2015), like the fanglomerate of Huntsville 
(Thv) and younger conglomeratic unit Tcy, may be at least partly Quaternary even though they are consolidated (rock). We 
have chosen to keep rocks (consolidated and/or lithified) as Tertiary and unconsolidated deposits as Quaternary and Quaternary/
Tertiary to emphasize their erosional, geotechnical, and hydrological differences, and because ages are only inferred. Because 
volcanic ashes noted in table 2 (Mazama, Lava Creek B, Bishop, Mesa Falls, Huckleberry Ridge) would better constrain the 
ages of these deposits, these Quaternary deposits should be closely examined for volcanic ash beds.

Unit(s) Feet (m) above drainage Age (ka=1000) years Comments

Qal, Qay, Qafy at to slightly above <~13 ka Post Lake Bonneville

 
Qa2 ~15 feet (5 m) <~13 ka Younger age limit uncertain, post Lake Bonneville

Qat2* ~10 to 20 feet (3–6 m)

Qaf2* ~20 to 40 feet (6–12 m)

Qap ~20 to 40 feet (6–12 m)

Qatp* 20 to 30 feet (6–9 m) ~13-15 ka Provo shoreline occupation, Lake Bonneville

Qafp ~ 30 to 45 feet (9–14 m)

Qab 45 to 90 feet (14–27m) Sites >50 feet (15 m) may be part of unit Qfdb

Qafb ~45 to 70 feet (14–20 m) ~15-20 ka Bonneville shoreline occupation, Lake Bonneville

Qfdb ~50 to 100 feet (15–30 m) fans that go into lake and become deltas

Qao ~70 to 120 feet (20–37 m) ~95-153 ka “Bull Lake” glaciation-related deposits

Qato* ~100 feet (30 m)

Qafo ~70 to 120 feet (20–37 m) ~98-155 ka Amino acid ages, also >70–100 ka soil carbonate age
> 400 ka amino acid age is possible if two alluvial surfaces

Qaoe 120 to 230 feet (35–70 m) >247ka >780 ka paleomag age, but paleomag may be on QTay;

Qafoe ~120 to 200 feet (35–60 m) suspect marine oxygen isotope stage 16

QTay ~215 to 450 feet (66–137 m) >780 ka Note height overlap with Qaoe

QTao ~320 to 800 feet (100–240 m) >780 ka

QTaf ~230 to 300 feet (70–90 m) >780 ka May be upstream equivalent of QTay
~320 to 1000 feet (100–300 m) >780 ka May be entirely Pliocene

Table 1. Heights of alluvial deposits above adjacent active drainages in the Peterson quadrangle.  Some heights (units with *) are not mapped 
in the Peterson quadrangle but are around Morgan and Round Valleys in the adjacent Morgan, Durst Mountain, and Snow Basin quadrangles 
(updated from Coogan and others, 2015). Younger ages (<20 ka) from Lake Bonneville history in carbon-14 years  (see Oviatt and others, 
1992). See Chadwick and others (1997), Phillips and others (1997) and Licciardi and Pierce (2018) for “Bull Lake” and Qaoe ages (cosmo-
genic ages). Other age estimates from Sullivan and others (1988) and Sullivan and Nelson (1992).
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Marine OIS (bold),  
age in ka

Middle Rocky Mountain 
glaciation with age in ka

Great Basin lake cycle 
with age in ka

North American  
continental glaciation 

with age in ka
Notes, age in ka

1, <11 Mazama ash, 6.74 Hallett 
and others, 1997

2, 11-24, 14-29* “Pinedale” 12-23 Bonneville 12-30; 
Lake Lahontan

major, late Wisconsin 
end 10

major continental=middle 
Rocky Mtn glaciers

4, 57-71 both likely obliterated by “Pinedale” Cutler Dam 59b; 82a early Wisconsin start 75

6, 127-186, 
130-191*

“Bull Lake” 101?, 111-131, 
118-153, 163?

Little Valley >112-126; 
138a; 153-187c; Lake  
Manly in Death Valley

major, late Illinoian 
end 125

major continental=middle 
Rocky Mtn glaciers

8, 242-301, 
243-300* “Sacagawea Ridge”? >245 Pokes Point?, >271c early Illinoian start 265 moraine age from Phillips 

and others, 1997

10, 334-364, 
337-374*

pre-Illinoian A, formerly  
Kansan 300?-435

type Kansan is Nebraskan 
in age, so now use pre-
Illinoian

12, 427-474, 
424-478*

“Sacagawea Ridge” >245 on 
moraine; best guess for  
“Sacagawea Ridge” since 
major continental glaciers

Pokes Point by Oviatt 
and others, 1999

major, pre-Illinoian B, 
formerly Kansan 300?-
435

moraine age from Phillips 
and others, 1997; major 
continental=middle Rocky 
Mtn glaciers

14, 528-568, 
533-563*

pre Pokes Point 600? 
(>500<610)

“Nebraskan” end 500, 
pre-Illinoian C

16, 621-659, 
621-676*

“Sacagawea Ridge”?, Lava 
Creek B ash (640) in fluvial 
deposits correlated across lake 
by Chadwick and others, 1997

 “Lava Creek” lake,  
pre Pokes Point 600?

major, pre-Illinoian D, 
Nebraskan

ash age Lanphere and 
others, 2002; major 
continental=middle Rocky 
Mtn glaciers; could be 
“Cedar Ridge”

18, 712-760, 
712-761*

older “Cedar Ridge”? 
Washakie Point?

“Lake Dominguez” top,  
Bishop ash (760) pre-Illinoian E? ash age Izett and  

Obradovich, 1991

20, 787-<820, 
790-814*

type “Washakie Point” not  
reverse polarized, so 
“Washakie Point” likely not 
Marine OIS 20

775+10 bottom of Brunhes 
normal paleomagnetism 
chron from Bassinot and 
others, 1994

22, 865->879, 
866-900*;
24 917-936*

pre-Illinoian F

38, 1244-1264*; 
40, 1286-1304* pre-Illinoian G Mesa Falls ash, 1285  

Lanphere and others, 2002

64, 1782-1802.5* pre-Illinoian I?,  
“Nebraskan” start 1800

1770 top of Olduvai 
normal paleomagnetism 
subchron

78?, 2043-2088*
“Lake Dominguez”  
bottom, Huckleberry 
Ridge ash (2060)

ash age Lanphere and 
others, 2002

Table 2. Comparison of Marine Oxygen Isotope Stages (OIS) to middle Rocky Mountain glaciation, Great Basin lake cycles, and North 
American continental glaciation, with ages in kilo-annum (ka).  Ages are approximate because determined by different methods.  Marine 
OIS ages are from Bassinot and others (1994) and when marked with * from Lisiecki and Raymo (2005) updated in http://lorraine-lisiecki. 
com/LR04_MISboundaries.txt, accessed February 4, 2021.  Middle Rocky Mountain glacial ages are mostly from data in Phillips and oth-
ers (1997) and Licciardi and Pierce (2018).  Great Basin lake cycle ages are from numerous sources, in particular McCalpin (1986) = a, 
Kaufman and others (2001) = b, and Balch and others (2005) = c.

http://lorraine-lisiecki.com/LR04_MISboundaries.txt
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GLACIAL GEOLOGY

Several distinct end and lateral moraines and glacier-carved ridges (aretes) are visible on the east slope of the Wasatch 
Range in the Peterson quadrangle and are shown on plate 1. The youngest deposits (Qgy, Qgmy; m1 and m2 moraines) are 
in the cirques, and based on cirque setting and ages of cirque deposits to the south in the Little Cottonwood Canyon area of 
the Wasatch Range (Madsen and Currey, 1979), they are likely Holocene (<~12 ka [corrected]). Downslope from cirques 
in the Peterson quadrangle are Pinedale age (~12 to 30 ka) (Gosse and others, 1995; Phillips and others, 1997; see also 
Licciardi and Pierce, 2008, 2018) glacial deposits (Qgp, Qgmp, Qgap). Farthest upslope are recessional moraines (p3) of 
glacial stillstands and/or minor advances (deglacial pauses) of late Pinedale-age (~12–15 ka) glaciers that are likely about 
the same age as the regression of Lake Bonneville from the Provo shoreline; p3 aretes are mapped but may be older (p4 or 
p5). Downslope (and higher above p3 lateral moraines) are older end and lateral moraines that, like p3 moraines, typically 
have asymmetrical crests with the gentler side away from the now receded glacier. Unlike the Little Cottonwood Canyon 
area near Salt Lake City, a pair of overlapping end and lateral moraines (p4 and p5) in the Peterson quadrangle appear to 
be Pinedale glacial age (formed during transgression of Lake Bonneville to the Bonneville shoreline and during occupation 
of this shoreline); this Pinedale age is based on vegetation and soil development on, and morphology of moraines. Crests 
of some p4 and p5 moraines can be traced upslope into aretes of the same age. Still farther downslope from and higher 
laterally above p4 and p5 lateral moraines are older glacial deposits (Qgo, Qgmo, Qgao), with one or two well-vegetated 
end and lateral moraines that have more symmetrical crests (bl and pre-bl?). These older moraines are thought to be Bull 
Lake glacial age (95 to 153 ka) (see Chadwick and others, 1997; Phillips and others, 1997; Licciardi and Pierce, 2008, 
2018), but like the older alluvial deposits (Qao, Qato, Qafo) may encompass Bull Lake-age deposits and older deposits 
(labeled pre-bl? on our map) related to the Pokes Point lake cycle associated with Marine Oxygen Isotope Stage 12 (see 
Oviatt and others, 1999) (table 2). Correlations of outwash with alluvial deposits have not been documented, but see table 
1. The extent of these older outwash deposits is typically small and their existence in some drainages is inferred from aretes 
above p4-5 glacier-carved ridges.

The numbering and ages of glacial features on the west slope of the Wasatch Range near the heads of Middle and South 
Forks of Kays Creek and the head of Webb Canyon (Holmes Creek) may not be the same as on the east side. Mass-
movement degraded, pre-Pinedale glacial deposits (Qmg?) may be present at the head of Adams Canyon (North Fork of 
Holmes Creek).

King and others (2008) previously proposed possible age equivalency between moraines in the Snow Basin and Ogden 
7.5-minute quadrangles and moraines in Little Cottonwood Canyon near Salt Lake City (see Madsen and Currey, 1979), 
but examinations of aerial photographs of the Little Cottonwood Canyon area for this report show the moraines are likely 
not equivalent. In particular the m1 and m2 moraines of the Peterson, Snow Basin, and Ogden 7.5-minute quadrangles 
are less vegetated and more rocky (less soil development) than the upper and lower Devils Castle moraines in the Albion 
Basin near Salt Lake City. The Hogum Fork moraines in Little Cottonwood Canyon typically have double crests (Madsen 
and Currey, 1979); and, although they have similar vegetation development and rocky appearance, the p3 moraines of the 
Peterson quadrangle (m3 of the Snow Basin quadrangle) lack double crests. Also of importance is that two Pinedale-age 
end moraines are at least locally present in the Peterson quadrangle (p4 and p5), while only a single Pinedale-age moraine 
(Bells Canyon) was noted near Salt Lake City (Madsen and Currey, 1979; Laabs and others, 2011; Laabs and Munroe, 
2016; Quirk and others, 2018), and the pre-Wisconsin, Bull Lake-age Dry Creek moraine directly underlies the Bells Can-
yon deposits (Madsen and Currey, 1979). King is still uncertain if the moraines labeled m5? in the Snow Basin quadrangle 
are Pinedale (p5 of this report) or Bull Lake (bl of this report) age, so only one Pinedale age end moraine (m4) may be 
present in the Snow Basin quadrangle.  Most of the moraines labeled BL? in the Snow Basin quadrangle are likely Bull 
Lake age, although the glacial deposits in the Maples recreation area (formerly campground) are probably pre-Bull Lake 
age. Two Bull Lake-age moraines or a Bull Lake and pre-Bull Lake moraine (bl and pre-bl) may be present in the Peterson 
quadrangle above Jacobs, Peterson, Smith, Dalton, and Line Creeks on the east flank of the Wasatch Range and above the 
South Fork of Kays Creek on the west side of the range, and possibly up the Middle Fork of Kays Creek on the west side 
of the range. Pre-Bull Lake glacial deposits may be related to pre-Illinoian continental glaciation (>300 ka) and the Pokes 
Point lake cycle (>271 ka, see Balch and others, 2005; or most likely ~450 ka, Marine Oxygen Isotope Stage 12, see Oviatt 
and others, 1999) (see also table 2).
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DESCRIPTION OF MAP AND CROSS SECTION UNITS

SURFICIAL DEPOSITS

QUATERNARY

Alluvial Deposits

Qal  Stream alluvium and floodplain deposits (Holocene) – Sand, silt, clay, and gravel in channels, floodplains, and ter-
races less than 10 feet (3 m) above Weber River and Peterson and Dalton Creeks; includes muddy, organic overbank 
and oxbow lake deposits, particularly along the Weber River; composition in creeks depends on source area; composi-
tion along Weber River diverse due to extensive drainage basin; 0 to 20 feet (0–6 m) thick; greater thicknesses (60 or 
70 feet [~20 m]) reported in Morgan Valley (see Utah Division of Water Rights well drilling database) likely include 
Lake Bonneville and possibly older Pleistocene deposits.

Qa  Alluvium, undivided (Holocene and Pleistocene) – Sand, silt, clay, and gravel in stream and alluvial-fan deposits; 
composition depends on source area; variably sorted; variably consolidated; deposits lack fan shape of Qaf and are 
distinguished from terraces (Qat) based on upper surface sloping toward adjacent streams from sides of drainage; 
where possible subdivided, with relative ages indicated by number and letter suffixes (with 1, when present, being the 
youngest and being at to slightly (<10 feet [3 m]) above drainages in adjacent quadrangles (see table 1); in the Peterson 
quadrangle Qa with no suffix only used where alluvium underlies landslides (Qms/Qa) along north margin of map 
area; generally 0 to 20 feet (0–6 m) thick.

Qa2?, Qay, Qay?

  Younger alluvium (mostly Holocene) – Composition, bedding, and characteristics like undivided alluvium with Qay 
at to slightly above present drainages, unconsolidated, and not incised by active drainages; likely mostly Holocene in 
age and post-dates late Pleistocene Provo shoreline of Lake Bonneville; Qay queried where age uncertain; generally 0 
to 20 feet (0–6 m) thick. The lone Qa2 is queried (Qa2?) and located south of Peterson Creek, and is queried because 
age is uncertain, due to height not fitting into ranges in table 1 and/or typical order of surfaces contradicts height-
derived age.

Qapb, Qapb?, Qap, Qap?, Qab, Qab?

  Lake Bonneville-age alluvium (upper Pleistocene) – Composition, bedding, and characteristics like undivided al-
luvium but height above present drainages appears to be related to shorelines of Lake Bonneville; also unconsolidated 
to weakly consolidated and incised by active drainages; alluvial deposits labeled Qap and Qab are likely related to 
the Provo (and slightly lower) and Bonneville (at 5180 feet [1580 m] elevation in area) shorelines of Lake Bonneville, 
respectively; in the Peterson quadrangle, ages of alluvium, including terraces and fans, are in part based on heights 
above present drainages (table 1); here Qap is about ~20 to 45 feet (6–14 m) above and Qab is 45 to 90 feet (14–27 
m) above; Qapb is used where Qap and Qab can not be separated; unit symbols queried where age uncertain due to 
height not fitting into ranges in table 1 and/or typical order of surfaces contradicts height-derived age; generally 0 to 
20 feet (0–6 m) thick, but Qap is up to about 50 feet (15 m) thick with Qapb and Qab locally up to 40 and 90 feet (12 
and 27 m) thick, respectively.

  A prominent surface (“bench”) is present on Qap and Qatp at about 4900 feet (1494 m) along the Weber River in 
Morgan Valley (Snow Basin, Peterson, Durst Mountain, and Morgan quadrangles), about 25 to 40 feet (8–14 m) above 
the Weber River, with the Provo shoreline at elevations of 4800 to 4840 feet (1463–1475 m) near the head of Weber 
Canyon in the Snow Basin quadrangle. Speculatively, the alluvium was derived from erosion of Lake Bonneville 
deposits (Ql, Qlf, Qls, Qdlg, Qadb) above the bench and alluvium related to the Bonneville shoreline (Qab, Qafb, 
Qadb) that backfilled valleys during the transgression of the lake.

Qao, Qao?

  Older alluvium (mostly upper Pleistocene) – Sand, silt, clay, and gravel in stream and alluvial-fan deposits above 
and likely older than the Bonneville shoreline; mapped on surfaces above Lake Bonneville-age alluvium (Qap, Qab, 
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Qapb, Qafp, Qafb, Qafpb); composition depends on source area; deposits lack fan shape of Qaf and are distin-
guished from terraces (Qat) based on upper surface sloping toward adjacent streams from sides of drainage; unit 
symbol queried where age uncertain due to height not fitting into ranges in table 1 and/or typical order of surfaces 
contradicts height-derived age; generally 0 to 20 feet (0–6 m) thick, but locally up to 110 feet (34 m) thick.

  In the Peterson quadrangle, ages of alluvium, including terraces and fans, are in part based on heights above present 
drainages (table 1); here Qao is about 70 to 120 feet (20–37 m) above adjacent drainages; see table 1 and note revision 
from Coogan and King (2006), and King and others (2008).

  Qao is likely older than Lake Bonneville and the same age as Qafo, so Qao is likely Bull Lake glaciation age, 95,000 
to 153,000 ka (see Chadwick and others, 1997; Phillips and others, 1997; Licciardi and Pierce, 2008, 2018).  From 
work in the Devils Slide quadrangle (Coogan and King, 2016) and age estimates in Sullivan and Nelson (1992) and 
Sullivan and others (1988), older alluvium (Qao, Qafo, Qato) may encompass an upper (pre-Bull Lake) and lower 
(Bull Lake) alluvial surface that is not easily recognized in Morgan Valley, but is visible to the east.

Qaoe, Qaoe?

  Older eroded alluvium (middle and lower Pleistocene) – Mostly sand, silt, and gravel in eroded remnants of alluvium 
(stream and alluvial-fan deposits); composition depends on source area; deposits lack fan shape of Qaf and are distin-
guished from terraces (Qat) based on upper surface sloping toward adjacent streams from sides of drainage; located 
above the Bonneville shoreline (at 5180 feet [1580 m] elevation in area) and apparently above and older than pre-Lake 
Bonneville older alluvium (Qao and Qafo); mapped on benches about 120 to 230  feet (35–70 m) above Weber River 
on west side of Morgan Valley in Peterson quadrangle, at an elevation of about 5300 to 5350 feet (1615–1630 m); 
this is slightly higher than on east side of Morgan Valley (120–200 feet [35–60 m] above) in the Snow Basin, Durst 
Mountain, and Morgan quadrangles; unit symbol queried where age uncertain due to height not fitting into ranges in 
table 1 and/or typical order of surfaces contradicts height-derived age; about 10 to 60 feet (3–20 m) thick.

  West of the Weber River in the Morgan quadrangle, age estimated by Sullivan and others (1988) as older than 730 ka 
based on reversed paleomagnetism (>780 ka in Bassinot and others [1994]), but the sample site is one of the highest 
alluvial remnants of Qaoe (>200 feet [60 m] above  the Weber River) and may be unit QTay. If this high remnant is 
QTay, it is >780 ka, and Qaoe and Qafoe may be related to Pokes Point lake cycle (Marine Oxygen Isotope Stage 
12 by Oviatt and others, 1999) (pre-Illinoian B continental glaciation, >300 ka) and/or be pre-Pokes Point (Marine 
Oxygen Isotope Stage 16, “Nebraskan” continental glaciation, >500 ka) (see table 2). The age(s) of units Qaoe and 
Qafoe might be refined if a Lava Creek B and/or Bishop ash were found in them (see table 2).

Qat  Stream-terrace alluvium (Holocene and Pleistocene) – Sand, silt, clay, and gravel in terraces above floodplains; 
moderately sorted; variably consolidated; upper surfaces slope gently downstream; Qat with no suffix used at single 
site along Dalton Creek, because it is the lowest terrace (so should be Qat2), but only Qap is nearby; this Qat is 20 feet 
(6 m) above adjacent drainage, and used Qaty in Snow Basin quadrangle for terraces this low; in adjacent quadrangles 
(see table 1) number and letter suffixes indicate relative ages, with 2 being the youngest terraces; 0 to at least 20 feet 
(0–6 m) thick.

Qaf  Alluvial-fan deposits, undivided (Holocene and Pleistocene) – Mostly sand, silt, and gravel that is poorly bedded and 
poorly sorted; variably consolidated; includes debris-flow deposits, particularly in drainages and at drainage mouths 
(fan heads); generally less than 60 feet (18 m) thick. Mapped in Peterson quadrangle where fan age uncertain.

Qafy, Qafy?

  Younger alluvial-fan deposits (Holocene and uppermost Pleistocene) – Mostly sand, silt, and gravel that is poorly 
bedded and poorly sorted; unconsolidated; Qafy below the Bonneville shoreline typically contains well-rounded re-
cycled Lake Bonneville gravel; includes debris-flow deposits, particularly in drainages and at drainage mouths (fan 
heads); unit symbol queried where age uncertain; generally less than 40 feet (12 m) thick.

  Qafy fans are active and impinge on and deflect present-day drainages like the Weber River; Qafy fans may be as 
old as the uppermost Pleistocene regressive shorelines below the Provo shoreline, but are mostly younger than Lake 
Bonneville (mostly Holocene). 
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Qafp, Qafp?, Qafb, Qafb?, Qafpb, Qafpb?

  Lake Bonneville-age alluvial-fan deposits (upper Pleistocene) – Composition, bedding, and characteristics like un-
divided alluvial fans, but height above present drainages appears to be related to shorelines of Lake Bonneville (see 
table 1); also these fans are inactive, unconsolidated to weakly consolidated, and locally dissected; fans labeled Qafp 
and Qafb are likely related to the Provo (and slightly lower) and Bonneville shorelines of late Pleistocene Lake Bonn-
eville, respectively; where they cannot be separated in the southeast part of the Peterson quadrangle they are shown as 
Qafpb; unit symbols queried where age uncertain due to height not fitting into ranges in table 1 and/or typical order 
of surfaces contradicts height-derived age; 10 to less than 60 feet (3 to <18 m) thick.

  Like Qa suffixes, fan ages in the Peterson quadrangle are partly based on heights above present drainages (see table 1 
and note revisions from Coogan and King, 2006, and King and others, 2008); in this quadrangle heights at drainage-
eroded edges of fans are about 30 to 45 feet (9–14 m) above adjacent drainages for Qafp, and 45 to 70 feet (14–20 m) 
above adjacent drainages for Qafb.

Qafo, Qafo?

  Older alluvial-fan deposits (mostly upper Pleistocene) – Incised and at least locally dissected fans; contain sand, silt, 
and gravel that is poorly bedded and poorly sorted; includes debris-flow deposits, particularly in drainages and at drain-
age mouths (fan heads); unit Qafo is typically above and apparently “cut” by (older than) the Bonneville shoreline, 
indicated by a bench at the shoreline; upstream unit Qafo is topographically higher than fans that are likely related to the 
Bonneville shoreline (Qafb); generally less than 60 feet (18 m) thick. Map unit symbol queried where age is uncertain 
due to height not fitting into ranges in table 1 and/or typical order of surfaces contradicts height-derived age. 

  Like Qa suffixes, fan ages in the Peterson quadrangle are partly based on heights above present drainages (see table 1 
and note revisions from Coogan and King, 2006, and King and others, 2008); in this quadrangle heights at drainage-
eroded edges of older fans are about 75 to 120 feet (23–37 m) above adjacent drainages for Qafo.

  The amino-acid age estimates presented in Sullivan and Nelson (1992) imply Qafo to the east in the Morgan quad-
rangle considerably predates Lake Bonneville and is middle Pleistocene in age (>400 ka). However, the Bonneville 
shoreline is obscure on this fan when it should be sharp, and soil-carbonate age estimates (>70–100 ka) and other 
amino-acid age estimates (~98–155 ka) in Sullivan and others (1988) imply these older fans are related to Bull Lake 
glaciation (95,000 to 153,000 ka; see Chadwick and others, 1997; Phillips and others, 1997; Licciardi and Pierce, 
2008, 2018). From work in the Devils Slide quadrangle (Coogan and King, 2016) after release of the Snow Basin map 
of King and others (2008), Qafo (Qao, Qato) may encompass two ages of older alluvial deposits (Qao, Qafo) with 
the lower younger set being Bull Lake age and the older upper set possibly being related to the Pokes Point lake cycle 
(at about 450 ka according to Oviatt and others, 1999) (see table 2); also see unit Qgao.

Qafoe, Qafoe?

  Older eroded alluvial-fan deposits (middle and lower Pleistocene) – Eroded fan remnants located above and appar-
ently older than other pre-Lake Bonneville alluvial deposits (Qafo and Qao); contains mostly sand, silt, and gravel 
that is poorly bedded and poorly sorted; less bouldery and lower relative to high-level alluvium (QTa, QTao, QTaf); 
about 120 to 200 feet (35–60 m) above present streams on both sides of Morgan Valley in Peterson and Morgan quad-
rangles, and about 300 feet (100 m) and greater than 400 feet (120 m) above Weber River northwest of Peterson and 
in southeast Snow Basin quadrangle, respectively; 0 to 60 feet, (0–18 m) thick. Map unit symbol queried where age is 
uncertain due to height not fitting into ranges in table 1 and/or typical order of surfaces contradicts height-derived age. 
Likely same age as Qaoe (Marine Oxygen Isotope Stage 12 and/or 16; middle Pleistocene), but possibly older than 
>780 ka paleomagnetic reversal (see table 2) and early Pleistocene in age.

Lacustrine Deposits

Qly  Young lacustrine deposits (Holocene) – Deposits in ponds in landslides along Line Creek and seasonal lakes in 
cirques on east flank of the Wasatch Range; likely formed after Pleistocene glaciation, and possibly after Holocene 
moraines (m1 and m2); may be underlain by glacial deposits (Qgy) in cirques; composition depends on local sub-
strate; likely less than 20 feet (6 m) thick.
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Ql  Lake Bonneville deposits, undivided (upper Pleistocene) – Silt, clay, sand, and cobbly gravel in variable proportions; 
mapped where grain size is mixed, or surface weathering obscures grain size and deposits are not exposed in scarps 
and construction cuts; mapped along west side of Weber River in Peterson quadrangle; thickness uncertain.

Qlf  Lake Bonneville fine-grained deposits (upper Pleistocene) – Mostly silt, clay, and fine sand (typically eroded from 
shallow Norwood Formation) in Morgan Valley; deposited near- and off-shore in lake; yellow clay about 13 feet (4 m) 
thick in water well south of Peterson; red laminated claystone at least 12 feet (4 m) thick on Frontier Drive in Snow 
Basin quadrangle (see Rogers, 1986, borehole 1). 

  Deeper water fine-grained deposits overlie older shoreline and delta gravels (Qlf/Qdlg) at the mouths of several drain-
ages along Weber River; the gravels were deposited above the Provo shoreline during transgression of Lake Bonnev-
ille to the Bonneville shoreline (see unit Qdlg).

Qls  Lake Bonneville sand (upper Pleistocene) – Mostly sand with some silt and gravel deposited nearshore; mapped 
south of Peterson on west side of Morgan Valley below the Bonneville shoreline and above the Provo shoreline; typi-
cally less than 20 feet (6 m) thick, but thicker in “bench” east of Cottonwood Creek in Snow Basin quadrangle. 

Glacial Deposits

Qg, Qg?, Qgm, Qga, Qga?

  Glacial till and outwash, undivided age (Holocene and upper and middle? Pleistocene) – Undivided because 
age is uncertain and unit symbols queried where interpretation as glacial deposits is uncertain. Qg is undivided 
glacial deposits (till and outwash) with various possible ages; till is non-stratified, poorly sorted clay, silt, sand, 
and gravel, to boulder size; Qgm is moraines of unknown age that are mapped where distinct shapes of end, reces-
sional, and lateral moraines are visible; outwash (Qga) is stratified and variably sorted, but better sorted and bed-
ded than till due to alluvial reworking; Qga is mapped directly downslope from other glacial deposits where it is 
thick enough to obscure older deposits and bedrock, and where it can be separated from ground moraine (mapped 
as Qg) and alluvium (mapped as various Qa__); all glacial deposits locally include mass-movement (Qms, Qmt, 
Qct) and rock glacier (Qgr) deposits that are too small to show separately at map scale; 0 to 150 feet (0–45 m) 
thick, ground moraine and outwash thinner. Glacial deposits of any age are prone to slope failures, because they 
are typically clay rich.

Qgy, Qgy?, Qgmy, Qgmy?

  Younger glacial till and outwash (Holocene) – Mapped in cirques as undivided (Qgy) and distinct moraines (Qgmy); 
see sub-unit differences under undivided glacial units (Qg, Qgm, Qga); moraines are mapped where distinct shapes 
of end and lateral moraines are visible; include 8000- to 10,000-year-old and possibly middle Holocene (about 5000 
years old) deposits with very poorly developed soil and sharp, mostly non-vegetated moraines (m2 and m1 crests, 
respectively); ages modified from Madsen and Currey (1979); estimate distinct moraines 10 to 40 feet (3–12 m) thick 
and all deposits (Qgy, Qgy?) possibly up to 80 feet (24 m) thick. Qgy and Qgmy queried where age uncertain or 
interpretation as glacial deposits is uncertain.

Qgp, Qgp?, Qgmp, Qgmp?, Qgap, Qgap?

  Pinedale glacial till and outwash (upper Pleistocene) – Pinedale-age (~12 to 30 ka) (see Gosse and others, 1995; 
Phillips and others, 1997; see also Licciardi and Pierce, 2008, 2018); for exposure age summary to south in central 
Wasatch Range see Quirk and others (2020), and note ages do not agree with corrected carbon-14 ages of Madsen 
and Currey (1979); variably vegetated deposits mapped as undivided (Qgp), distinct moraines (Qgmp), and outwash 
(Qgap); see sub-unit differences under undivided glacial units (Qg, Qgm, Qga); moraines are mapped where distinct 
shapes of end, recessional, and lateral moraines are visible; mapped moraines have poorly developed soil and moder-
ate to sharp moraine morphology (p5 and p4 moraine crests); upslope these younger units include partially vegetated 
recessional deposits from glacial stillstands and/or minor advances (deglacial pauses) (p3 moraine crests); located up 
drainage or laterally downslope from likely older glacial deposits (Qgo, Qgmo, Qgao); 0 to 150 feet (0–45 m) thick, 
ground moraine and outwash thinner. Qgp is queried where deposits may be younger. Qgmp is queried along Right 
Hand Fork of Dalton Creek where moraine may be younger. Qgap is queried along Dalton Creek where it may be 
alluvium that is not related to glaciation.
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Qgo, Qgo?, Qgmo, Qgmo?, Qgao, Qgao?

  Older glacial till and outwash (upper and middle? Pleistocene) – Mapped down drainage from and locally laterally 
above Pinedale deposits as undivided (Qgo), till in distinct vegetated moraines (Qgmo), and outwash (Qgao); see 
sub-unit differences under undivided glacial units (Qg, Qgm, Qga); mapped moraines have well-developed soil 
and subdued moraine morphology; located down drainage or laterally upslope from Pinedale glacial deposits (Qgp, 
Qgmp, Qgap); may have two Bull Lake moraines and deposits, or Bull Lake and pre-Bull Lake deposits (on plate 
1 labeled bl and pre-bl?); Bull Lake glaciation age about 95 to 153 ka (see Chadwick and others, 1997; Phillips and 
others, 1997; Licciardi and Pierce, 2008, 2018); unit symbols queried where age uncertain or identification as glacial 
deposits is uncertain; estimated 0 to 160 feet (0–50 m) thick from topography and geologic mapping; ground moraine 
and outwash thinner.

  Potential pre-Bull Lake glacial deposits (pre-bl?) are possibly above Jacobs Creek, and likely between Middle and 
Left Hand Forks of Peterson Creek, Dalton Creek, north of Smith Creek and between forks of Line Creek; may have 
deposits this old on west side of Wasatch Range up Middle Fork of Kays Creek. The pre-Bull Lake deposits may be 
related to the Pokes Point lake cycle (see unit Qaoe and table 2 for timing). 

Qgr, Qgr?

  Rock glacier deposits (Holocene and uppermost Pleistocene) – Angular, mostly cobble- to boulder-sized debris with 
little matrix in un-vegetated mounds with lobate crests; includes protalus ramparts; probably inactive (no ice matrix); 
in Peterson quadrangle mapped in several cirques on east flank of Wasatch Range and, as Qgr?, in cirques up Middle 
Fork of Kays Creek and Holmes Creek on west flank; may be as much as about 10,000 years old (m1-2) and as young 
as Little Ice Age (A.D. 1500 to 1800) (see for example Luckman, 1986); likely 0 to 30 feet (0–9 m) thick. Map unit 
symbol queried where unit may be entirely protalus ramparts, in which ice matrix was never present.

Mass-Movement Deposits

Qmdf, Qmdf?

  Debris- and mud-flow deposits (Holocene and upper Pleistocene) – Poorly sorted, clay- to boulder-sized material in 
unstratified deposits characterized by rubbly mounded surfaces, natural lateral levees, channels, and lobes; variably 
vegetated; in drainages, typically form mounded surfaces rather than being flat like unit Qac, possibly indicating 
Qmdf is more viscous; many debris-flow deposits cannot be shown separately from alluvial fans at map scale; age(s) 
uncertain; deposits in drainages likely post-date the Provo shoreline of Lake Bonneville, whereas deposits on slopes 
are likely as old as Pinedale glaciation, but could pre-date Lake Bonneville; 0 to 40 feet (0–12 m) thick.  Map unit 
symbol queried where may not be debris flow.

Qmdfp, Qmdfo, Qmdfo?

  Lake Bonneville age and older debris- and mud-flow deposits (upper and middle? Pleistocene) – These units are 
like Qmdf, including thickness, but are above present drainages and may be glacial outwash deposits (Qgap, Qgao). 
Qmdfp only mapped south of Smith Creek and may be related to upper Pleistocene Pinedale recessional glacial de-
posits or be a failure of younger adjacent Provo shoreline related alluvium (Qap). Qmdfo and Qmdfo? only mapped 
north of Right Hand Fork of Peterson Creek; Qmdfo? is truncated up drainage (slope) by later landslides and may be 
related to Bull Lake glacial deposits (like Qmdfo), or be related to middle Pleistocene pre-Bull Lake glaciation, or be 
alluvial deposits of some other age.

Qms, Qms?, Qmsh, Qmsy, Qmso, Qmso?

  Landslide deposits (Holocene and Pleistocene) – Poorly sorted clay- to boulder-sized material; includes slides and 
slumps and locally flow and flood deposits; generally characterized by hummocky topography, main and internal 
scarps, and chaotic bedding in displaced blocks; composition depends on local sources; morphology becomes more 
subdued with time and amount of water in material during emplacement; thickness highly variable, because boreholes 
in Snow Basin quadrangle indicate about 20 to 30 feet (6–9 m) thick in small slides/flows (see Rogers, 1986), and 80 
to 100 feet (25–30 m) thick for larger landslides; unit Qms may be in contact with unit Qms where two different/
distinct slides abut; Qms and Qmso queried (?) where identification as a landslide uncertain. Numerous landslides 
are too small to show at map scale and typically landslides less than 6 feet (2 m) thick have not been mapped.
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  Qms without suffix is mapped where the age is uncertain (though likely Holocene and/or late Pleistocene), where 
portions of slide complexes have different ages but cannot be shown separately at map scale, or where boundaries be-
tween slides of different ages are not distinct. The estimated time of emplacement is indicated by relative-age number 
and letter suffixes with: h = mostly historical, likely emplaced in the last 80 to 150 years, with unvegetated scarps; y = 
younger than Bonneville shoreline, and mostly pre-historic, landslides deflect streams or failures are in Lake Bonneville 
deposits, and scarps are variably vegetated; and o = likely older than (emplaced before) Lake Bonneville transgression.  
Suffixes y and o indicate probable Holocene and Pleistocene ages, respectively. Qmso typically mapped where depos-
its are perched above present drainages, rumpled morphology typical of mass movements has been diminished, and/
or younger surficial deposits cover or cut Qmso. These older deposits may be as unstable as other landslides, and are 
easily reactivated with the addition of water, be it rain, snow melt, altered drainage, irrigation, or septic tank drain fields.

Qms(QTaf?), Qms(QTao), Qms(Ts), Qms(Tn), Qms(Tn?), Qms(rx)

Qms?(QTaf), Qms?(rx), Qms?(Ts), Qms?(Tn), Qms?(Tn?), Qms?(Tw), Qms?(Xfc)

Qmso(Tn), Qmso(Xfc)

Qmso?(Tn), Qmso?(Xfc)

  Block landslide and possible block landslide deposits (Holocene and upper and middle? Pleistocene) – Mapped 
where nearly intact block is visible in landslide (mostly block slide) with stratal strikes and dips that are different from 
nearby in-place bedrock; unit in block shown in parentheses, for example Qms(Tw); composition depends on unit in 
block; see surficial deposits or rock unit in parentheses for descriptions of blocks; rx indicates multiple or unknown bed-
rock unit(s); thickness highly variable, up to about 20 to 30 feet (6–9 m) for small slide blocks, and cross sections show 
larger blocks are about 150 feet (45 m) thick. Relative ages are like those for other landslide deposits (Qms, Qmso). 

  Unit symbols queried (Qms?, Qmso?) where bedrock block may be in place, as suggested by stratal strikes and dips 
in the block that are about the same as nearby in-place bedrock. 

Qmc, Qmc?

  Landslide and colluvial deposits, undivided (Holocene and Pleistocene) – Poorly sorted to unsorted clay- to boulder-
sized material; mapped where landslides are difficult to distinguish from colluvium (slopewash and soil creep) and where 
mapping separate, small, intermingled areas of landslide and colluvial deposits is not possible at map scale; locally 
includes talus and debris flow and flood deposits; typically mapped where landslides are thin (“shallow”); also mapped 
where the blocky or rumpled morphology that is characteristic of landslides has been “smoothed” (diminished) by slope-
wash and soil creep; composition depends on local sources; unit symbol queried where identification is uncertain; 0 to 40 
feet (0–12 m) thick. These deposits may be as unstable as other landslide units (Qms, Qmsh, Qmsy, Qmso).

Qmt, Qmt?

  Talus (Holocene and Pleistocene) – Unsorted clay- to boulder-sized angular debris (scree) at the base of and on steep 
slopes; typically on unvegetated slopes in cirques in Wasatch Range; only larger debris fields can be shown at map 
scale; includes colluvium locally and grades laterally into Qct; unit symbol queried where identification is uncertain; 
0 to 30 feet (0–9 m) thick.

  Deposits west of Francis Peak are unique in that they are not in cirques and almost look like they have flowed down-
hill, possibly due to periglacial solifluction.

Qct, Qct?

  Colluvium and talus, undivided (Holocene and Pleistocene) – Unsorted, clay- to boulder-sized, angular debris 
(scree) at base of and on steep, typically partly vegetated slopes of Wasatch Range; unit symbol queried where identi-
fication is uncertain; 0 to 30 feet (0–9 m) thick. 

Qc, Qc?

  Colluvium (Holocene and Pleistocene) – Unsorted clay- to boulder-sized material; includes materials moved by 
slopewash and soil creep; composition depends on local sources; unit symbol queried where identification is uncer-
tain; generally 6 to 20 feet (2–6 m) thick; not mapped where less than 6 feet (2 m) thick.
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Qcg, Qcg?

  Gravelly colluvial deposits (Holocene and Pleistocene) – Clay to boulder-sized material moved by slopewash and 
soil creep downslope from gravel-rich rocks and deposits of various ages, for example units Tcg, QTaf, QTay/QTao, 
Qafoe/Qaoe, and Qafo/Qao; may contain residual deposits; typically differentiated from colluvium and residual 
gravel (Qc, Qng) by prominent stripes trending downhill on aerial photographs; stripes are concentrations of gravel 
up to boulder size; unit symbol queried where identification is uncertain; generally 6 to 20 feet (2–6 m) thick; some 
deposits previously included in the Huntsville fanglomerate (see Coogan and others, 2015).

Mixed Deposits

Qac Alluvium and colluvium (Holocene and Pleistocene) – Unsorted to variably sorted gravel, sand, silt, and clay in 
variable proportions; includes stream and fan alluvium, colluvium, and, locally, mass-movement deposits too small to 
show at map scale; typically mapped along smaller drainages that lack flat bottoms; 0 to 20 feet (0–6 m) thick.

Qla  Lake Bonneville lacustrine deposits and post- and pre-Lake Bonneville alluvial deposits, undivided (Holocene 
and upper? Pleistocene) – Mostly poorly sorted and poorly bedded sand, silt, and clay, with some gravel; mapped in 
Peterson quadrangle near Bonneville shoreline (about 5180 feet [1579 m] elevation in area) where lake deposits are 
reworked by stream action; deposits typically eroded from shallow Norwood Formation; thickness uncertain.

Qng Gravel deposits (Holocene and Pleistocene?) – Poorly sorted pebble to boulder gravel in a matrix of silt and sand; 
mostly gravel-armored deposits on and near alluvial and colluvial deposits like units Qcg, Qab, Qao, and QTaf; lo-
cally on gravel-rich bedrock (Tcg); typically have gently dipping upper surface; generally 6 to 20 feet (2–6 m) thick; 
mapped in northeast corner of Peterson quadrangle and on benches above streams in east part of quadrangle. Gravel 
of uncertain origin probably includes alluvium, colluvium, and/or residuum.

Qmg, Qmg?

  Mass-movement and glacial deposits, undivided (Holocene and Pleistocene) – Unsorted and unstratified clay, silt, 
sand, and gravel; mapped where glacial deposits lack typical moraine morphology, and appear to have failed or moved 
down slope; unit symbol queried where may be either mass-movement or glacial deposits; likely less than 30 feet (9 
m) thick; may be thicker in cirque at the head of the South Fork of Kays Creek and the queried deposits at the head of 
North Fork of Holmes Creek (above Adams Canyon), both on the west side of the Wasatch Range.

Qdlg Lake Bonneville deltaic and lacustrine deposits, undivided (upper Pleistocene) – Mostly sand, silty sand, and 
gravelly sand deposited near shore as the lake transgressed to and was at the Bonneville shoreline; only mapped in the 
Peterson quadrangle under Qlf as a stacked unit (Qlf/Qdlg); in Morgan Valley it is more gravel rich and cobbly than 
in the Snow Basin quadrangle along Cottonwood Creek; 34 feet (10 m) thick below yellow clay (Qlf) in water well 
south of Peterson and at least 40 feet (12 m) thick in the Snow Basin quadrangle.

Qadb Lake Bonneville alluvial-fan and deltaic deposits, undivided (upper Pleistocene) – Cobbly gravel, sand, silt, and 
clay deposited above (subaerial) and in Lake Bonneville (subaqueous); typically mapped where shorelines are ob-
scure, so that line cannot be drawn between alluvial fan and delta; typically better sorted delta and lake deposits over 
poorly sorted alluvial-fan deposits; in the Peterson quadrangle, present on both sides of the Weber River above the 
Provo shoreline and deposited as the lake transgressed to the Bonneville shoreline; Qadb mapped above Dry Hollow 
and Peterson and Dalton Creeks and on north edge of quadrangle near big fans; best developed along Deep Creek to 
the southeast in the Morgan quadrangle and Strawberry Creek to the north in the Snow Basin quadrangle; at least 40 
feet (12 m) thick.

Qh  Human disturbance (Historical) – As mapped obscure original rocks or deposits by cover or removal; only larger 
disturbances shown; includes engineered fill, particularly along Interstate Highway 84 and the Union Pacific Railroad 
grades, and some dam fill and large gravel pits; also at Francis Peak radar station. Edges of disturbances that post-date 
the 1986 aerial photographs used to map the geology in this quadrangle are shown with hatchures and were added 
from and are visible on 2006, 2009, and/or 2011 orthophotographs of the quadrangle.
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QUATERNARY AND TERTIARY

QTa, QTay?, QTao, QTao?

  High-level alluvium (lower Pleistocene and/or Pliocene) – Variably sorted gravel, sand, silt, and clay above other 
stream-terrace and alluvial-fan deposits; located above Qaoe; typically contains more boulders than lower alluvium 
(including units Qafoe and Qaoe); at least locally gravel-armored and poorly sorted; where possible, divided into 
younger (y) and older (o) based on relative height of deposits above drainages (see table 1) and elevation difference of 
more than 150 feet (45 m) on adjacent high-level alluvial deposits; in Morgan Valley, heights above drainages overlap 
and appear to decrease upslope with QTay about 215 to 450 feet (66–137 m) above drainages and QTao about 320 to 
800 feet (100–240 m) above drainages; queried due to overlap and wide range in heights above drainages; due to un-
certainty in correlating alluvial remnants, QTay may be 780 ka or older based on Brunhes-Matuyama paleomagnetic 
reversal (see table 2); estimated 10 to 80 feet (3–24 m) thick. The age(s) of these deposits and unit QTaf might be 
refined if a Lava Creek B, Bishop, Mesa Falls, and/or Huckleberry Ridge ash were found in them (see table 2). Some 
of these deposits were previously included in the Huntsville fanglomerate (see Coogan and others, 2015).

QTaf, QTaf?

  High-level alluvial-fan deposits (lower Pleistocene and/or Pliocene) – Gravel, sand, silt, and clay above other stream-
terrace and alluvial-fan deposits (including QTa and QTao); typically contains more boulders than alluvium younger 
than QTao and QTa (including units Qafoe and Qaoe); at least locally gravel-armored and poorly sorted; unit 
symbol queried where age uncertain due to height not fitting into ranges in table 1 and/or typical order of surfaces 
contradicts height-derived age; slightly eroded fans are present about 320 to 1000 feet (100–300 m) above and south 
of the Weber River in Morgan Valley and decreasing upslope to about 230 feet (70 m) above adjacent streams; QTaf 
may encompass two sets (ages) of fans because one fan is ~360 and 520 feet (110–160 m) above adjacent drainages 
while several eroded fans are lower (~230 to 300 feet [70–90 m] above adjacent drainages and downslope) and may 
be upstream equivalents of unit QTay; best example of lower and upper surfaces is south of Line Creek; estimate fans 
are 30 to 200 feet (9–60 m) thick.

  On the margin of the slightly eroded fan south of the Weber River, we mapped high-level fan over the Norwood For-
mation (QTaf/Tn) although the fan cover material may be older than the slightly eroded QTaf fan adjacent to it.

STACKED UNITS

  Numerous stacked units are on this map. This is partly a result of the compromise between showing surficial deposits 
and bedrock on the same map.  By stacked, we mean a thin covering of one unit over another, which is shown by the 
upper map unit (listed first) then a slash and then the underlying unit (for example, Qc/Tw). The upper unit is typi-
cally an unconsolidated surficial deposit and the lower unit is rock (Q__-/rx), but exceptions are present. We map the 
stacked units where it is important to show both units as they have potential geologic hazards and/or economic value 
(for example landslides or landslide-prone impermeable clayey bedrock units, and sand and gravel). The upper unit is 
typically about 6 feet (2 m) thick and conceals but does not obscure the lower unit. This thickness was chosen because 
a building foundation would penetrate a thinner upper unit, particularly colluvium (Qc), making it a small factor in 
construction. We have not mapped most of the colluvium as it is thinner than 6 feet (2 m) and we can tell what unit 
is underneath. The exceptions to this approach are where the thin deposits obscure the geologic details of faulting, 
lithologies, and age relationships. The underlying unit in the stack has been identified based on exposures at the edges 
of the stacked unit and small exposure windows (gaps) or excavations in the cover that cannot be shown at map scale, 
and materials in the cover that came from the underlying unit.

Qc/Qmso, Ql/Qmso, Ql/Qmso?, Qlf/Qmso, Qlf/Qmso?, Qapb/Qmso, Qab/Qmso

  Surficial deposits over mass-movement deposits – These units were mapped because they inform the map user 
about underlying potential landslide hazards.

Qms/Qa, Qmc/Qadb

  Mass-movement deposits over surficial deposits – These units were mapped because they inform the map user about 
overlying potential geologic hazards.
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Ql/Tn, Qlf/Tn, Qlf/Tn?, Qls/Tn, Qaoe?/Tn, Qafoe?/Tn, QTa/Tn, QTaf/Tn, QTaf/Tn?

  Surficial deposits over bedrock – The units were mapped because they inform the map user about potential geologic 
hazards due to the underlying landslide-prone and impermeable clayey bedrock of the Norwood Formation.

Qafy/Qap, Qlf/Qdlg

  Surficial deposits over surficial deposits – These units were mapped because they inform the map user about strati-
graphic age-relation details seen in the field that went into the Quaternary correlation chart.

EXPOSED BEDROCK UNITS

TERTIARY

Ts  Tertiary strata, undivided (Oligocene-upper Paleocene?) – Used where the Norwood and Wasatch Formations are 
likely in landslide blocks Qms(Ts) or are in what may be landslide blocks – Qms?(Ts). 

Tcg  Unnamed Tertiary conglomeratic rocks (Oligocene?) – Only mapped in the northeast corner of the Peterson quad-
rangle east of the Weber River. Characterized by rounded, pebble- to boulder-sized, quartzite-clast conglomerate with 
less than 10 to more than 50 percent gray, tan, or reddish-gray to reddish-tan claystone/mudstone matrix; interbedded 
with tan, gray and reddish-brown, pebble-bearing mudstone to sandstone and some claystone (altered tuff); most beds 
poorly indurated and poorly exposed; some non-conglomeratic beds in Tcg look like the gray upper Norwood Forma-
tion (Tn) and are locally tuffaceous; some Tcg pebble beds have carbonate and chert (like Norwood beds) and lesser 
quartzite clasts; to northeast in Durst Mountain quadrangle, Tcg conglomerates include rare altered tuff clasts from 
Norwood Formation (Tn) (see Coogan and King, 2006; Coogan and others, 2015); locally erodes to gravel-covered 
slopes; locally includes landslides that are too small to show at map scale; despite clay matrix, seems less prone to 
mass movements than Norwood strata; only base of unit exposed in the Peterson quadrangle, the map unit is about 700 
feet (210 m) thick where upper and lower contacts are exposed in the adjacent Morgan quadrangle (see Coogan and 
others, 2015).

  The Tcg-Tn contact is problematic because altered tuff (Tn) and conglomerate (Tcg) are interbedded and the contact 
lacks an angular unconformity. In the Durst Mountain quadrangle, the Norwood and at least the lower part of this map 
unit (Tcg) are interbedded (Coogan and King, 2006), so Oligocene(?) age.

Tn, Tn?

  Norwood Formation (lower Oligocene and upper Eocene) – Typically light-gray to light-brown, altered tuff (clay-
stone), tuffaceous siltstone, sandstone, and conglomerate; locally colored light shades of red and green; variable cal-
careous cement and zeolitization that is less common to south, such that extensive unaltered tuff is present in southern 
Peterson quadrangle; zeolite and other marker beds mapped as an aid to recognizing geologic structure (green dashed 
lines); involved in numerous landslides of various sizes and locally includes landslides that are too small to show at 
map scale; landslides are due to high clay content and Norwood is an aquitard; based on outcrop pattern, dip, and to-
pography, the Norwood is at least 7000 feet (2135 m) thick to the northwest in the Snow Basin quadrangle (King and 
others, 2008) and thins to the south so about 5000 feet (1525 m) thick where exposed west of the Weber River north 
of Morgan; about 2800 foot (850 m) thickness exposed east of East Canyon Creek (and Morgan Valley syncline axis) 
in type area (Eardley, 1944) in Porterville quadrangle (see also Bryant and others, 1989, p. K6); note that the type-area 
thicknesses reported in Coogan and King (2006) and King and others (2008) are incorrect.

  Unit symbol queried where identification is uncertain, typically because of poor exposures and/or red coloration inher-
ited from eroding underlying Wasatch Formation (Tw); see Coogan and others (2015) for such complications on the 
east side of Morgan Valley.

  The Norwood is different in the southern Peterson and Morgan quadrangles, nearer the type area (see Eardley, 1944), 
as it contains extensive unaltered tuff (hence his name Norwood Tuff), has cut-and-fill structures (fluvial), and in-
cludes volcanic-clast conglomerate beds. In the Morgan quadrangle, it also contains local limestone and silica-ce-
mented rocks (Coogan and others, 2015). The Norwood map unit is herein referred to as Norwood Formation, rather 
than Norwood Tuff, because the type area includes only part of the formation (see thickness discussion), the Norwood 
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contains many lithologies, and this emphasizes that it is not glassy away from the type area (see Coogan and others, 
2015; Coogan and King, 2016).

  Corrected Norwood K-Ar isotopic ages are 38.4 Ma (sanidine) from a sample taken along Utah Highway 66 near the 
Norwood type area (Evernden and others, 1964) to the southeast in the Porterville quadrangle, and 39.3 Ma (biotite) 
from farther south in a different depositional basin, the East Canyon graben, East Canyon Reservoir quadrangle 
(Mann, 1974). The sample from near the type area, and a Protoreodon fossil (Adamson, 1955, p. 39), are from near 
the top of the section exposed east of East Canyon Creek. The relationships to other volcanic deposits of similar age 
are in the Tertiary Geology section of this report.

Tw, Tw?

  Wasatch Formation (Eocene and upper Paleocene) – Typically red-weathering conglomerate, as well as lesser 
sandstone, siltstone, and mudstone; clasts typically rounded and from Precambrian and Paleozoic rocks; lighter 
shades of red, yellow/tan, and light gray more common in upper Wasatch near contact with Norwood Formation; 
basal conglomerate less likely to be red since dominated by locally derived material, with clasts of Precambrian 
crystalline rocks; thickness varies due to relief on basal and overlying erosional surfaces; thickness uncertain; 
locally includes landslides that are too small to show at map scale; involved in landslides because it is at least lo-
cally clay rich and poorly consolidated. Permeability in the Wasatch Formation is complicated due to clay content, 
limestone beds, and variable cementation that is so strong in some areas that quartzite clasts are broken through 
rather than around during fracturing. The variability is indicated by perched springs in the unit. Unit symbol queried 
where identification as Tw is uncertain.

  The Wasatch seems to be about 1600 feet (490 m) thick where exposed on the north margin of the map area but the con-
tact with Precambrian rocks is likely faulted and the 40 degree stratal dip is uncertain; a 30 to 45 degree dip range gives 
a 1250 to 1767foot (380–540 m) thickness range for a 2500-foot (770 m) outcrop width (not adjusted for topography 
because dip range is the largest factor). The Wasatch is thicker in the central part of map area, about 2700 feet (830 m) 
thick from a 4200-foot (1300 m) outcrop width and 40 degree dip (not adjusted for topography); then it thins in the south 
part of map area to about 2000 feet (620 m) from a 3200-foot (1000 m) outcrop width and a 40 degree dip (not adjusted 
for topography). King estimates the Wasatch is 2350 feet (725 m) thick, from a 3650-foot (1125 m) outcrop width and 
a 40 degree dip along the line of cross section (not adjusted for topography). The Norwood Formation unconformably 
overlies these Wasatch strata so this apparent variation may only be a difference in the amount of Wasatch covered by 
Norwood. The Wasatch Formation may be even thicker to the east in the subsurface, because the total thickness on the 
east side of Morgan Valley is estimated as 5000 to 6000 feet (1500–1800 m) (Coogan and others, 2015).

  Eocene and upper Paleocene age based on palynology of Wasatch strata to the northeast (Coogan and King, 2016, ap-
pendix table 1, sample 97-7, P4-5 palynomorphs and sample 97-13, Eocene palynomorphs) and southeast (Jacobson 
and Nichols, 1982, figure 7, P5 and P5-6 samples P3044-2A, 3B, and P3387-2 updated with mapping by Bryant, 1990; 
Jacobson and Nichols, 1982, figure 11, P5-P6 samples P2833-1 and P2833-2, updated with mapping from Coogan 
and King, 2016). Also to the southeast, Wasatch strata contain P5-6 palynomorphs (upper Paleocene), and the paly-
nomorph Platycarya platycaryoides (Nichols and Bryant plate 2 in Bryant, 1990, sample D6052), which is Eocene 
(see Nichols, 2003). We used Jacobson and Nichols (1982) for Paleocene (P) biozones based on palynology and their 
Paleocene-Eocene boundary, which is likely the C24 paleomagnetic reversal (see Hicks and others, 2003). Other 
Eocene-Paleocene boundaries would put P6 palynomorphs in the Eocene and P stands for Paleocene.

  Wasatch debris, in a landslide west of the range crest (labeled Tw debris in section 5, T. 5 N., R. 1 E.), is the only 
Wasatch material in the Peterson quadrangle that is on the Wasatch Range. The debris appears to be associated with 
an Eocene-Paleocene deeply weathered erosion surface (paleosol) (tan soil of Bell, 1951; see Wilf, 2000).

CRETACEOUS

KXc, KXc?

  Chloritic gneiss, cataclasite, mylonite, and phyllonite (Cretaceous and Proterozoic) – Dark- to gray-green, variably 
fractured and altered rock with local micaceous cleavage; contains variable amounts of fine-grained, recrystallized 
chlorite, muscovite, and epidote; present in shear and fracture zones, and in diffuse altered zones associated with quartz 
bodies that crosscut basement rocks (Yonkee, 1992; Yonkee and others, 1997); in the Peterson quadrangle, typically 
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non-resistant and locally hematite stained; some linear zones of this unit mapped as faults by Bryant (1984, 1988); unit 
symbol queried where poorly exposed, so identification uncertain. Unit produced by mostly Cretaceous deformation 
and greenschist-facies alteration that overprints various Farmington Canyon Complex protoliths (Yonkee and Lowe, 
2004). However, Bryant (1988) indicated that some quartz veins and pods may be related to Precambrian alteration.

SUBSURFACE PALEOZOIC UNITS

  The units present in the subsurface below the Wasatch Formation in Morgan Valley are not known, because the width 
and height of the Wasatch anticlinorium is uncertain, the amount of erosion of the Ogden thrust sheet and sub-thrust 
strata are uncertain, and the subsurface structure has been interpreted differently (compare Bryant, 1990, cross-section 
C-C'; Royse, 1993, cross-section H-H'; Yonkee and others, 1997, cross-section B-B'; Yonkee and others, 2003). Also 
the Paleozoic Tooele arch and Stansbury uplift have affected the area, so the units exposed to the north in the Ogden 
Canyon area (Yonkee and Lowe, 2004; King and others, 2008) are not the same as those to the east on Durst Mountain 
(Coogan and King, 2006; Coogan and others, 2015), or those exposed to the south in the Wasatch Range near Salt 
Lake City (see  Bryant, 1984, 1988, 1990; Van Horn and Crittenden, 1987). Because the Paleozoic erosion increased 
to the south and the Durst Mountain exposures are directly east of the Peterson quadrangle, we have emphasized 
descriptions of the Durst Mountain exposures. We have attempted to present undeformed unit thicknesses although 
thicknesses in the area are highly variable due to tectonic thinning and duplication (see for example Yonkee and others, 
1997; Yonkee and Lowe, 2004). Following Coogan (Western State College [now Western Colorado University], July 
2, 2005, unpublished digital cross section), we have shown eroded Mississippian and older Paleozoic strata below the 
Wasatch Formation, and have not shown the Ogden thrust(s), although Yonkee and others (1997, 2003) did.

MISSISSIPPIAN

Mdo Doughnut Formation (Upper Mississippian) – Upper part is limestone and siltstone that is about 300 feet (90 m) 
thick on Durst Mountain; lower part is siltstone, black shale, and limestone that is typically less resistant than adjacent 
map units and is about 200 feet (60 m) thick on Durst Mountain (Coogan and others, 2015) where not attenuated.

Mh  Humbug Formation (Upper Mississippian) – Gray to tan limestone in upper part and quartzose sandstone with lime-
stone and dolomite interbeds in lower part; about 700 to 800 feet (215–245 m) thick north of Ogden Canyon (after 
Sorensen and Crittenden, 1974); about 700 feet (215 m) thick on Durst Mountain (Coogan and King, 2006). Thickness 
uncertain because contact with underlying Deseret Limestone is not placed at a consistent horizon in the Ogden Can-
yon area of the Wasatch Range and on Durst Mountain, as both units contain sandstone and carbonate strata in varying 
proportions.

Mde Deseret Limestone (Mississippian) – Limestone, dolomite and sandstone, with dark, non-resistant, phosphatic shale 
at base (Delle Phosphatic Shale Member); about 500 feet (150 m) thick on Durst Mountain (Mullens and Laraway, 
1973; Coogan and King, 2006); upper contact shown on the map of the Snow Basin quadrangle (King and others, 
2008) is incorrect (see Coogan and King, 2016).

Mg-Ml

  Gardison (Lodgepole) Limestone (Lower Mississippian) – Gray limestone and lesser dolomitic limestone, local-
ly cherty; variably fossiliferous; estimate thickness as 650 to 800 feet (200–240 m); called Gardison Limestone in 
Wasatch Range by Sorensen and Crittenden (1972), Bryant (1984, 1988, 1990), Yonkee and Lowe (2004), and King 
and others (2008), and Lodgepole to east on Durst Mountain (Coogan and King, 2006).

DEVONIAN

  Devonian and Cambrian strata that are exposed to the east on Durst Mountain and to the south in the Wasatch Range 
near Salt Lake City are a transitional shelf sequence between deeper-water marine strata exposed north of the map 
area on the Willard thrust sheet and shallower-water strata exposed to the east on the Crawford thrust sheet (see for 
example Coogan, 1992). Therefore, the use of Devonian Beirdneau, Hyrum, and Water Canyon names, along with 
Cambrian St. Charles, Nounan, and Bloomington names from the outer shelf sequence (Willard thrust sheet) may not 
be appropriate for the Durst Mountain strata, Ogden Canyon (Ogden thrust sheet) strata, and/or the strata near Salt 
Lake City. We chose to retain these Devonian and Cambrian formation names because: (1) they have been used previ-
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ously (Williams, 1971; Sorensen and Crittenden, 1979; Crittenden and Sorensen, 1985; Yonkee and Lowe, 2004), (2) 
previous work on the Devonian and upper Cambrian strata in the area is confusing (see previous references as well as 
Eardley, 1944; Brooks and Andrichuk, 1953; Brooks, 1954; Schick, 1955; Brooks, 1959; Mullens and Laraway, 1973; 
Coogan and King, 2006), and (3), except for the Water Canyon, the strata, although thinner, are like the strata on the 
Willard thrust sheet. To the south near Salt Lake City, Bryant (1984, 1988, 1990) mapped different Devonian litholo-
gies (Pinyon Peak and Stansbury Formations) related to the Stansbury uplift, that include erosion (unconformities) 
and clastic sediment deposition. Devonian age subdivisions are not noted due to unit name uncertainty.

  Pinyon Peak Limestone (Devonian) – Pale tan to gray, thin-bedded nodular limestone containing gray shale inter-
beds; overlies Stansbury Formation near Salt Lake City; reportedly 165 to 200 feet (50–60 m) thick, but shown as 300 
feet (90 m) thick in cross section (see Bryant, 1990); mostly younger than Beirdneau Sandstone so would be in the 
unconformity shown on Peterson quadrangle lithologic column.

  Stansbury Formation (Devonian) – Light-gray to yellowish-gray, calcareous sandstone and siltstone, and silty lime-
stone; some reddish shale; basal pale-gray to white laminated dolomite, dark-gray dolomite, and quartzite bed; un-
conformably overlies Maxfield(?) Formation near Salt Lake City with Devonian, Silurian, Ordovician, and Cambrian 
rocks missing; reportedly ~500 feet (150 m) thick, but shown as 300 feet (90 m) thick in cross section (see Bryant, 
1990); roughly the same age as the Beirdneau Sandstone and contains similar rock types.

Db  Beirdneau Sandstone (Devonian) – Gray to buff to orange-yellow to reddish-colored dolomitic to calcareous sand-
stone and siltstone, some silty to sandy dolomite and limestone, and lesser intraformational (flat-pebble) conglomer-
ate; about 200 to 300 feet (60–90 m) thick on Durst Mountain (Coogan and King, 2006) and likely 250 to 300 feet 
(75–90 m) thick in Wasatch Range to west in Ogden Canyon area (see Sorensen and Crittenden, 1972, 1974). The 
Beirdneau-Hyrum contact likely not consistently mapped in adjacent quadrangles. 

Dhw Hyrum and Water Canyon Formations, undivided (Devonian) – Missing near Salt Lake City.

  Hyrum Dolomite (Devonian) – Dark- to medium-brownish-gray and gray dolomite and minor silty limestone; in 
center has less-resistant beds that grade laterally into reddish- colored, dirty carbonate like the Beirdneau Formation 
(Db); this gradation created problems in mapping Db-Dh contacts and estimating thicknesses; estimate 250 to 450 
feet (75–140 m) thick on Durst Mountain (Coogan and King, 2006) and reportedly about 200 to 350 feet (60–105 m) 
thick to west near Ogden Canyon (after Sorensen and Crittenden, 1972, 1974; Yonkee and Lowe, 2004); unconform-
ably overlies Water Canyon Formation.

  Water Canyon Formation (Devonian) – Interbedded dolomitic to calcareous sandstone and sandy dolomite, and 
lesser limestone and calcareous siltstone, with distinctive light-colored carbonate at top; about 200 feet (60 m) thick 
on Durst Mountain (Coogan and King, 2006) and reportedly 30 to 100 feet (9–30 m) thick in Wasatch Range to west 
in Ogden Canyon area below Willard thrust sheet (Yonkee and Lowe, 2004).

SILURIAN AND ORDOVICIAN

  Silurian and Ordovician strata are missing on Durst Mountain (Coogan and others, 2006) and to the south in the 
Wasatch Range near Salt Lake City (Bryant, 1990), along with all or most(?) of the St. Charles Formation equivalent 
strata (uppermost Cambrian), due to thinning over Stansbury uplift (see Rigby, 1959) and/or Tooele arch (see Hintze, 
1959).  Note that about 15 miles (25 km) to the north of the Peterson quadrangle in Ogden Canyon, 1000 feet (300 
m) of Ordovician and upper Cambrian strata are present (Fish Haven, Garden City, and St. Charles Formations), as is 
part of the Bloomington Formation between the Nounan and Maxfield Formations. The Nounan, Maxfield, and Tintic 
Formations are also thicker in Ogden Canyon, although the Ophir Formation, between the Maxfield and Tintic Forma-
tions, is about the same thickness (see Yonkee and Lowe, 2004).

CAMBRIAN

  Units below may not be directly comparable to Bryant’s (1990); but overall, units are thinner on Durst Mountain than 
in the Wasatch Range.
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Cn  Nounan Formation (Upper and Middle Cambrian) – Medium-dark-gray, thick-bedded dolomite and limestone; esti-
mated 350 to 400 feet (105–120 m) thick on Durst Mountain (see Coogan and King, 2006) and about 500 to 750 feet 
(150–230 m) thick in Ogden Canyon area in Wasatch Range (Yonkee and Lowe, 2004). Nounan not mapped to south 
near Salt Lake City by Bryant (1984, 1988, 1990), but likely present in his atypically thick Maxfield Limestone unit 
(Cm). Van Horn and Crittenden (1987) locally divided Bryant’s Maxfield into an upper dolomite (likely the Nounan) 
and lower limestone (Maxfield).

  Aerial-photographic reconnaissance of Sessions Mountain in Bryant’s (1984, 1988, 1990) map areas shows a reddish-
brown swale in roughly the middle of his Maxfield, which marks the lithologic change in Van Horn and Crittenden’s 
(1987) Maxfield. This swale is characteristic of shales in the Bloomington Formation. To the north in Ogden Canyon, 
a similar or the same shale underlies the Nounan and is apparently 40 to 200 feet (10–60 m) thick (after Sorensen and 
Crittenden, 1972; Yonkee and Lowe, 2004).

Cbo Bloomington Formation (Cambrian) – Gray to olive-gray, silty argillite interlayered with thin- to medium-bedded, 
silty limestone, nodular limestone, and wavy-bedded (ribbon) limestone; thins over Tooele arch and not present on 
Durst Mountain and was not mapped to the south in the Wasatch Range (see Bryant, 1984, 1988, 1990; Van Horn and 
Crittenden, 1987). However, a shale appears to be present to the south on Sessions Mountain in the Wasatch Range 
(see Cn above) and appears to be about 130 feet (40 m) thick.

  In Ogden Canyon the shale is lithologically similar to the Calls Fort (upper) and Hodges (lower) Shale Members of 
Bloomington Formation (King and others, 2008). Eldoradia sp. trilobite fossil in Ogden Canyon (Rigo, 1968, USGS 
No. 5949-CO) supports the correlation with the Calls Fort Member, but this would require the Maxfield Limestone to 
be partly equivalent to the Bloomington Formation.

Cm  Maxfield Limestone (Middle Cambrian) – Limestone and calcareous siltstone; some dolomite at least locally; estimat-
ed thickness 300 feet (90 m) on Durst Mountain (Coogan and King, 2006; Coogan and others, 2015) and about 600 to 
900 feet (180–270 m) thick in Ogden Canyon in Wasatch Range (Rigo, 1968; after Yonkee and Lowe, 2004).  Because 
he reported a thickness of 1180 feet (360 m) and showed ~1400 feet (425 m) on his cross section, the Maxfield of Bryant 
(1984, 1988, 1990) and Van Horn and Crittenden (1987) likely includes all of the overlying Bloomington and Nounan 
Formations (see Cbo and Cn above) and may include upper and middle members of the underlying Ophir Formation.

Co  Ophir Formation (Middle Cambrian) – Includes upper argillite member, middle limestone member and lower argil-
lite member; argillites are brownish-gray to olive-gray, variably calcareous and micaceous argillite and slate with 
intercalated medium-gray limestone beds; middle limestone is thin- to medium-bedded, light- to medium-gray, with 
local silty partings to layers; total thickness at least 440 to 725 feet (135–220 m) on Durst Mountain (Coogan and King, 
2006; Coogan and others, 2015) and about 300 to 650 feet (90–200 m) thick near Ogden Canyon (Yonkee and Lowe, 
2004). Ophir of Bryant (1990) may or may not include upper and middle members because he reported a thickness of 
about 200 feet (60 m) but showed a cross-section thickness of 400 feet (120 m). 

Ct  Tintic Quartzite (Middle and Lower Cambrian) – Tan, very well-cemented quartzite; thin beds of argillite more 
abundant at top; conglomeratic in lower half with Precambrian quartzite pebbles and cobbles; basal 50 to 100 feet 
(15–30 m) is arkosic conglomerate of Farmington Canyon Complex material; about 1000 feet (300 m) thick on Durst 
Mountain (Coogan and King, 2006) and thickens to about 1100 to 1500 feet (335–450 m) to west in Wasatch Range 
(Sorensen and Crittenden, 1972; Yonkee and Lowe, 2004; King and others, 2008).

PROTEROZOIC, EXPOSED

Xfc, Xfc?

  Farmington Canyon Complex, undivided (lower Proterozoic) – In approximate order of abundance, migmatitic 
gneiss, quartz-rich gneiss, and biotite-rich schist, with lesser layers to pods of white quartzite, pegmatite, amphibolite, 
mafic rocks, and meta-ultramafic rocks; pods and layers are typically gradational into surrounding rock, with diffuse 
unmappable contacts and/or too small to show at map scale. Bryant (1988) described these rocks as less migmatitic to 
the south and mapped a schist and gneiss unit (his Afs, our Xfcgs) south of a gradational contact with more migmatitic 
rocks (his Afm, our Xfcm) in the Peterson quadrangle.
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All Farmington Canyon units display local retrograde alteration, largely chloritic, partly related to Cretaceous hy-
drothermal fluids. More information on the complex in the adjacent Ogden 7.5' quadrangle is available in Yonkee 
and Lowe (2004); see also Bryant (1988) for information on the complex in the Peterson, Snow Basin, Kaysville, 
and Bountiful Peak quadrangles as well as the Ogden 7.5' quadrangle. Barnett and others (1993) reported the various 
isotopic ages of the complex and concluded it is latest Paleoproterozoic (about 1700 Ma) in age. See also Nelson and 
others (2002) for 40Ar/39Ar age spectra (plateau) on amphiboles from the Santaquin, Utah area of the complex. Locally 
includes landslides that are too small to show at map scale. The Farmington Canyon Complex rocks are at least locally 
prone to slope failures because they have been deeply weathered to clay, likely during the Eocene and/or Paleocene 
(see for example Wilf, 2000), and possibly altered to clay on the west side of the Wasatch Range along the Wasatch 
Fault Zone during Basin and Range normal faulting. The map unit symbol is queried where Xfc may be completely 
covered by surficial deposits or unit may be the Wasatch Formation (Tw). Xfc label used in landslide blocks. Where 
possible rock types in the complex are divided into the following units:

Xfcm Migmatitic gneiss (lower Proterozoic) – Medium- to light-pink-gray, strongly foliated and layered (migmatitic) 
quartzo-feldspathic rock with widespread garnet and biotite; cut by variably deformed pegmatite dikes; unit also 
contains unmapped amphibolite bodies, granitic gneiss pods, and some thin layers of sillimanite-bearing, biotite-rich 
schist; contact with granitic gneiss and schist (Xfcgs) is gradational (after Yonkee and Lowe, 2004).

Xfcgs, Xfcgs?

Gneiss and schist (lower Proterozoic) – Biotite-feldspar-quartz gneiss and biotite schist, with less abundant layers of 
white quartzite; also contains pegmatite and amphibolite bodies; unit locally contains sillimanite-rich layers but does 
not contain widespread sillimanite or garnet like the biotite-rich schist, mapped and described by Yonkee and Lowe 
(2004), because the “degree” of metamorphism increases to the north. Garnet is present as a few percent in about half 
the schist and gneiss but is absent in the quartzite (Bryant, 1988).

This unit is basically Bryant’s (1988) schist and gneiss unit Afs. Our very approximately located contact is south of 
Bryant’s (1988, p. 15) contact and is based on the change in weathering from less resistant to the north to more resis-
tant with brighter colored, strongly foliated(?) ribs of quartzite(?) to the south. The marker beds on the map are from 
changes in resistance. Some of these ribs are described as chloritized quartz phyllonites by Gloyn and others (1995); 
but, they are not mapped as such by Bryant (1988, part of his Afq unit and many of his faults) or in this report. Phyl-
lonites are part of unit KXc in this report. The gneiss and schist unit is queried (Xfcgs?) on the south border of the map 
where it is poorly exposed and identification is uncertain.

Xfcp, Xfcp?

Pegmatite (lower Proterozoic) – Typically coarse-grained quartz, plagioclase, microcline, and biotite in varying pro-
portions; unit symbol queried where identification uncertain, that is the outcrop was not field checked; likely contains 
muscovite where mapped by Bryant (1984) in the Peterson quadrangle. Bell (1951) also showed several pegmatites (and 
aplites) on his map and the two on the range crest in the Peterson quadrangle are visible and are therefore on our map.
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